SORPTION DYNAMICS IN POROUS MEDIA

L. K. Tsabek UDC 541.183

The accuracy of different model equations of sorption dynamics in porous media is analyzed.
Analytical solutions of the equations are obtained for a rectangular isotherm.

The motion of a mixture of gases (liquids) through porous media is described by a quasilinear sys-
tem of equations. Such a system has invariant parallel transport solutions (travelling wave) only under
certain conditions (convexity of sorption isotherm for sorption dynamics and concavity of the isotherm for
desorption dynamics) [1].

1t is shown in [2] that for the equations of sorption dynamics in the outer diffusion kinetic region under
parallel transport conditions the resistance to mass transfer due to the finite rate of sorption dynamics and
longitudinal mixing can be added up in the first approximation and the equations of sorption dynamics can be
appropriately simplified.  In [3] it is shown phenomenologically that the resistance to mass transfer can be
approximately added up for all regimes of sorption dynamics; it is also shown how approximate model equa-
tions can be derived. However, the question of accuracy of different approximate model equations of sorp-
tion dynamics remained open. A rigorous estimate of the accuracy of different model equations can be ob-
tained by comparing numerical computations of the exact and approximate equations.

The computations for different types of isotherms (linear, convex, concave, s-shaped) were carried
out on a BESM-6 computer.

The computations for the convex isotherm are presented below by way of example, although all the
conclusions about the accuracy of approximate model equations will be valid for any type of isotherm.

The sorption dynamics is described by the equation of mass balance and the equation of outer diffu-
sion sorption kinetics
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We shall solve this quasilinear equation with appropriate initial and boundary conditions numerically by the
screw die method. The implicit iteration scheme of second order accuracy is absolutely stable for

2y
< max | e | (@)
Langmuir sorption isotherm has the form
(1-+p)
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The output dynamic curves corresponding to the motion of a rectangular perturbation through a porous me-
dium were computed for (3) with p = 10 for different values of the parameters o, 4. The dynamic curves
of distribution of the concentrations in the porous medium are shown in Fig. 1 by continuous lines for «
=+ = 0,5, by dashes for ¢ = 0.05, y = 0.95, and by dash—dots for o = 0,925, v = 0.075,

The exact system of equations (@ = y # 0) has form (1). The approximate systems are
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Fig. 1. Distribution of concentration in flow through a por-
ous medium at different instants of time. The numbers on
the curves are values of t. '
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The accuracy of the different approximate equations can be estimated by varying the parameters a, 7.
Actually, let us assume that it is required to compute the dynamic output curves of motion of concentrations
along a porous medium when the rates of mass transfer due to outer diffusion sorption kinetics and longi-
tudinal mixing are equal, i.e., o =+ = 0.5. In this case an exact numerical solution can be obtained from
the solution of system (1). However, it is possible to use the approximate model equation @), in which
the equivalent resistance to outer diffusion mass transfer is equal to the sum of the true resistance to outer
diffusion mass transfer and the resistance due to longitudinal mixing (¢ =0, y=1, o + ¥ =1). The ap-
proximate equation (5) can also be used in which the equivalent resistance due to longitudinal mixing is
equal to the sum of the true resistance due to longitudinal mixing and the resistance of outer diffusion mass
transfer (@ =1, y=0). It is evident from a comparison of the exact and the approximate model equations
that in outer diffusion kinetics the sorption dynamics can be advantageously described by the approximate
mode] equation (4), since this equation is more exact than (5).

Sorbents having an almost rectangular isotherm are often used in applications for processes of des-
sication etc. This isotherm may be regarded as a limiting Langmuir isotherm (p > 1) :
Lo<eLl, ( [0,0<q<1,
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Isotherm (6) is of certain interest, since on one hand for it the equations of sorption dynamics can be
solved analytically, and on the other hand using such solutions it is possible to estimate the time and the
length of the porous medium after which parallel transport conditions set in. In this formulation the bound-
ary value problem (1) of sorption dynamics reduces to Stefan's problem {4] with unknown movable boundary
1) :
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Solving (7) with the boundary condition c(l, t) = 0, we obtain
¢ )=V (@) {exp(2)— exp Az + (hy— M) [},
gz ) =V (&) {exp (A2) —exp [Mz + (A, — A} I}
1 1
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where & is an arbitrary function.
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We divide the second equation of (8) by the first. Aft‘ervsome reorganization we have

o 4000 =00 .
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From the second equation in (7) we get
‘ .
q(0, § = Ea (10)

Comparing (9), (10) we see that parallel transport conditions set in at t = t,, when saturation occurs at the
boundary (maxq = 1). Therefore considering the boundary condition ¢(0, t) = 1, from Eq. (8) we obtain the
solution

¢(z, 1) = {exp (h,2) — exp [hyz 4 (hy— M) [} {1 — exp 1(h, — ) (Y7 1y
We shall find the equation for determining the unknown boundary I({) from the integral form of the equation
of mass balance. After some manipulations we get
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from which we have
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Substituting (11) into (13) we obtain
(A, — M) exp (A,0) 2 0.
With an accuracy up to a few percents the parallel transport conditions set in for
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since exp(—4.6) £ 0.‘01,
Taking (13) into consideration we write solution (9), (11) in the following form:

ez, ) =exp(h?), gz H) =Ac(z t), A= const. (19
In the stationary front regime with t = t, z =1, with (14) taken into consideration problem (7) reduces to

the following:
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the solution of which is _
[ exp Dy — gl Ho< Y <00, Yo = — 1y = —ayhy,

t](Z, t):
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W= 4 =1, A= oah,
Ay
foexp g —2— 1O v+ P < y< oo,
clz, §) =
_ ! 1 , — oo <Y<y, +4°

1
y* = ?» In (othy). .

2

Let us consider the approximate model equation (4) when ¢ = 0, ¥ = 0. As follows from (14), in this case
the solution has a simple form -

eXp (_ y”"yo )’ yo<y< cc, yOZ—Y,
oz =g = v

1 , — 00 <YL Yy (15)
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since Ay = —1/y, y®=0.
For the approximate model equation (5) (@ = 0, y = 0) system (1) goes over into the following:

1 ac . dc 0% 1 .
o T T e =5 » y =
ge Ot 0z 922 q c>0, g, >1,¢(0, 8 =1,

e, i) =0.

(16)

Usually g, > 1 and the first term can be neglected. The solution of (16) without the first term is

¢z ) =b, (1) + b, () exp (%) ,

When the boundary conditions are taken into consideration we get

clz, H) = [1 —exp (Z—Zl-)] [l —exp (—%)]—1 . (17

We obtain the equation for the movable boundary from the integral form of the equation of mass balance:
: l
) =t— —— = 0. ‘
] aexp( " )7 a, 1(0)=0 (18)

The parallel transport conditions set in for a linear time dependence of the boundary (constant velocity of
the movable boundary); therefore

o, exp (—L) 20,
.

Hence we get

>, =46a.
Fort={,=3.6 o; z = 4.8 o the solution in the parallel transport regime is of the form

11 —exp (___y——yo ), —o00 <Y< Yy Yo =%
c(z )= S
0 s YLy <L o0, Y=2—4, (19)

gz 8 =1 (M) X
As an example solutions (14), (15), (19) for t = 5.0 are shown in Fig. 1 by the points I, II, III respec-
tively. It is evident from a comparison of the numerical and analytical solutions that for the rectangular
isotherm the dynamic output curves in the outer diffusion kinetic region in parallel transport regime can be

described by Eqgs. (14), (15).

NOTATION
c is the concentration of matter in the gas (liquid) flow;
q is the concentration of the absorbed matter;
- -1,
o= TTs;
Y= Te T;: 3

T =Tp + Tes

T = (1 +k)6D ) Aus

Te = (L + K)a)/((L + v)Bok
k = df(0)/de;

8 = (1—0)/0;

at+ty=1

i) is the relaxation time due to longitudinal mixing;

Te is the relaxation time due to finite rate of mass transfer at the outer
boundary of the grain;

c is the fraction of free space in the porous medium;

D, is the coefficient of effective longitudinal mixing;

u is the linear velocity of gas (liquid) flow;
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v is the symmetry parameter (v = 2 for spehrical grains with radius a,
v =1 for cylindrical grains with radius @, v = 0 for grains in the form
of sheets of thickness 2a);

8o is the mass transfer coefficient at the outer boundary of the grain;
t', 2! are the dimensional time and coordinate respectively;

t=t 'rz'i, z =17 6ku'1-r"z1 are the dimensionless time and coordinate, respectively;

q = f(c) is the sorption isotherm.
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